Oxidative cyclization of *N***-acylhydrazones. Development of highly selective turn-on fluorescent chemodosimeters for Cu2+†**

Ai-Fang Li, Hui He, Yi-Bin Ruan, Zhen-Chang Wen, Jin-Song Zhao, Qiu-Ju Jiang and Yun-Bao Jiang*

Received 8th July 2008, Accepted 10th October 2008

First published as an Advance Article on the web 10th November 2008 **DOI: 10.1039/b811612a**

A series of *N*-acylhydrazones were synthesised and found to be "turn-on" fluorescent chemodosimeters for Cu^{2+} . Among the tested transition metal ions such as Cu^{2+} , Pb^{2+} , Zn^{2+} , Cd^{2+} , Hg^{2+} , and Ni^{2+} , a prominent fluorescence enhancement of up to 1000-fold was only observed for Cu^{2+} in acetonitrile (CH3CN). This was indicated by an onset of unprecedented structured emission. Detailed experiments established that the highly Cu²⁺ selective fluorescence enhancement resulted from an oxidative cyclization by Cu²⁺ of the originally nonfluorescent *N*-acylhydrazones into highly fluorescent rigid 1,3,4-oxadiazoles, *n*-dope type blocks in optoelectronic materials. The chemodosimeters can be applied to sense Cu^{2+} at nM levels in CH_3CN and sub- μ M levels in neutral aqueous environments, despite a slower response in the latter case. It is expected that these redox-based chemodosimeters might be of general applicability.

Introduction

N-Acylhydrazones have been widely employed in organic¹ and analytical**²** chemistry, mainly in terms of metal ligands.**2,3** It is known that *N*-acylhydrazones coordinate strongly with a variety of transition metal ions, forming complexes of varied biological and pharmaceutical activities. The development of sensitive and selective fluorescent chemosensors for biologically important metal ions is of intense current interest because these metal ions play important roles in living and environmental systems.**⁴** Special attention has been focused on the design of fluorescent chemosensors for Cu2+ due to its essential yet toxic nature.**⁵** We previously found that *N*-(*p*-dimethylaminobenzoyl)hydrazone (**1**, Scheme 1), bearing an intramolecular charge transfer (ICT) fluorophore, *p*-dimethylaminobenzamide, showed a highly selective fluorescence response toward Cu^{2+} in CH₃CN, despite similar absorption spectral variations being observed with other metal ions such as Pb²⁺, Zn²⁺, and Hg²⁺ too.⁶ This finding suggested that the *N*-acylhydrazone in this case might act not only as a ligand. Although several explanations were proposed, the exact mechanism, however, could not be clarified with just one molecule that also bears complicated excited-state ICT photophysics.**⁶** In order to understand the responding mechanism, we decided to remove the ICT channel in **1** to simplify the excited-state photophysics and data rationalization. We therefore extended our investigation to a variety of *N*-benzoylhydrazones **2** and **3** bearing substituents X less electron-donating than p -NMe₂ in 1 (Scheme 1). A highly selective fluorescence response toward Cu^{2+} was again observed in both CH₃CN and CH₃CN–H₂O solutions.

Scheme 1 Molecular structures of *N*-acylhydrazones **1–4**.

In particular, the observed enhanced emission is unprecedentedly structured in these polar solvents. Detailed experiments allowed us to establish that the enhanced fluorescence was due to an oxidative cyclization by Cu^{2+} of the originally nonfluorescent *N*-acylhydrazones into highly fluorescent rigid 1,3,4-oxadiazoles. *N*-Acylhydrazones were therefore shown to be a kind of redoxbased "turn-on" fluorescent chemodosimeter for Cu^{2+} , a new entrance to the active subject of "turn-on" fluorescent chemosensors for Cu²⁺, a strongly quenching paramagnetic species.⁷⁻⁹ It should be pointed out that there have been several nice Cu^{2+} chemodosimeters with enhanced fluorescence signal outputs, which however follow hydrolysis⁸ or rearrangement reactions.⁹

Department of Chemistry, College of Chemistry and Chemical Engineering and the MOE Key Laboratory of Analytical Sciences, Xiamen University, Xiamen 361005, China. E-mail: ybjiang@xmu.edu.cn; Fax: (+86)592-218- 5662; Tel: (+86)592-218-5662

[†] Electronic supplementary information (ESI) available: Absorption and fluorescence spectral titration traces and NMR spectra for compounds **2–13**. See DOI: 10.1039/b811612a

Results and discussion

N-Acylhydrazones **2** and **3** were facilely synthesized by a simple one-step reaction in ethanol of the corresponding *N*benzoylhydrazine with 2-methoxybenzaldehyde and furan-2 carbaldehyde, respectively. 2a in CH₃CN exhibits three absorption bands centred at 287, 298, and 323 nm with respective molar absorption coefficients of 2.67×10^4 , 2.59×10^4 , and $2.93 \times$ 10^4 M⁻¹ cm⁻¹, indicative of the (π, π^*) transition character. In the presence of Cu^{2+} , the band at 323 nm is attenuated and a shoulder at *ca*. 365 nm is developed (Fig. 1a). Hg^{2+} and Pb^{2+} exert a similar effect, whereas other heavy transition metal ions such as Zn^{2+} , Cd^{2+} , and Ni^{2+} exert a minor influence on the absorption spectrum. **2b–d** behave similarly in their absorption spectral response toward these metal ions (Fig. S1-S4†). **3**, analogues of **2**, exhibit spectral variation profiles (Fig. S5-S8†) similar to those of 2. 2 and 3 in CH₃CN emit extremely weak fluorescence. In the presence of Cu^{2+} , however, an instant response was observed by a dramatic enhancement of up to 1000-fold, despite the wellknown quenching character of Cu^{2+} (Fig. 1b, 2, S9, and S10†). The fluorescence response profiles of 2 and 3 toward Cu^{2+} were found to be simpler than that of **1**, **⁶** in that there was no emission band shift and no fluorescence quenching at higher $Cu²⁺$ concentration with **2** and **3** (Fig. 2). Removing the excited-state ICT channel in **1**, much higher fluorescence enhancement for $2a$ and $3a$ by Cu^{2+} was observed (Fig. 2) than that for **1** which was *ca.*180-fold.**⁶** Assays of the fluorescence response of 2 and 3 in CH₃CN toward a variety of other transition metal ions such as Pb^{2+} , Zn^{2+} , Cd^{2+} , Hg^{2+} , and Ni2+ indicated that a prominent fluorescence enhancement was again only observed for $Cu²⁺$ whereas the other transition metal ions tested exerted little influence (Fig. 2). This means that the fluorescence responses of 2 and 3 are highly selective for Cu^{2+} , as is **1**. **⁶** The fluorescence enhancement factors (FEFs) of **2** and **3** by $Cu²⁺$ were found to be higher with increasing electron-donating ability of the substituent X and the FEFs of **3** were much higher than those of **2** (Fig. 2 and Table 1). It therefore appears that higher electron density at the hydrazone moiety and the relatively more exposed furan oxygen atom in **3** are important for higher FEFs. The fact that the fluorescence in CH3CN of **4** (Scheme 1), a control molecule for $3a$, does not show any response toward Cu^{2+} , despite

Fig. 1 Absorption (a) and fluorescence (b) spectra of $2a$ (20 μ M) in CH₃CN in the presence of increasing concentrations of Cu²⁺ (0–200 μ M). The excitation wavelength was 267 nm, an isosbestic wavelength observed in absorption titrations.

Fig. 2 Plots of fluorescence enhancement factor (FEF, I/I_0) in CH₃CN *versus* concentration ratio of metal ion to **2** and **3**. $R = 2a-d$ or $3a-d$, $[2] =$ $[3] = 10 \mu M$.

a substantial absorption variation (Fig. 3), nicely indicates that the vinyl proton =C*H* in **3a** plays an essential role in the fluorescence enhancement of $3a$ by Cu^{2+} .

Fig. 3 Absorption spectra of **4** (10 μ M) in CH₃CN in the presence of increasing concentrations of Cu²⁺ (0–200 μ M). The excitation wavelength for acquiring fluorescence spectra given in the inset is an isosbestic wavelength of 274 nm.

It was surprising that an unexpected structured emission was observed for 2 and 3 in the presence of Cu²⁺ (Fig. 1b and 4). The trend shown in Fig. 4, that the emission becomes less structured while the FEF becomes lower with decreasing electron-donating ability of the substituent X, seems to suggest that the FEF value is related to the structured extent of the fluorescence spectrum. In order to test this correlation, an extended variety of *N*-acylhydrazones (**5–12**, Scheme 2) were prepared and their fluorescence response toward Cu²⁺ was monitored in CH₃CN. The fluorescence of 5– **12** was similarly found to be enhanced by $Cu²⁺$, confirming that *N*-acylhydrazones could in general act as an excellent family of "chemosensors" for Cu^{2+} . The structured extents of the emission spectra and the FEF values shown in Fig. 5, however, indicate that the apparent correlation between the structured extents and the FEF values reached in Fig. 4 does not hold in general, the rigidity of the ligand itself obviously contributing to the structured extent of the final emission spectrum. The unexpected structured

	$\lambda_{\rm abs}/\rm{nm}$	$\epsilon/10^4$ M ⁻¹ cm ⁻¹	$\lambda_{\rm flu}/\rm{nm}$	FEF a	$\Phi^{\ b}$
2a	287/298/323	2.67/2.59/2.93	369		0.0007
$2a + Ni^{2+}$	365	0.32	364	1.9	0.0008
$2a + Cu^{2+}$	365	0.50	358	$280\,$	0.34
$2a + Zn^{2+}$	365	0.10	360	5.7	0.0013
$2a + Cd^{2+}$	364	0.08	367	1.4	0.0009
$2a + Hg^{2+}$	368	0.56	364	1.5	0.0025
$2a + Pb^{2+}$	375	0.26	364	1.4	0.0012
2 _b	286/297/323	2.12/2.10/2.50	370		0.0008
$2b + Ni^{2+}$	365	0.25	358	1.1	0.0010
$2b + Cu^{2+}$	368	0.33	351	$140\,$	0.30
$2b + Zn^{2+}$	365	0.10	353	5.7	0.0013
$2b + Cd^{2+}$	366	0.04	370	1.1	0.0010
$2b + Hg^{2+}$	372	0.40	357	2.4	0.0018
$2b + Pb^{2+}$	375	0.39	355	1.4	0.0011
2c	286/298/323	1.92/1.92/2.37	370		0.0007
$2c + Ni^{2+}$	364	0.20	358	1.1	0.0011
$2c + Cu^{2+}$	370	0.30	355	55	0.20
$2c + Zn^{2+}$	364	0.05	358	1.9	0.0027
$2c + Cd^{2+}$	364	0.05	370	2.2	0.0012
$2c + Hg^{2+}$	361	0.47	357	1.7	0.0024
$2c + Pb^{2+}$	375	0.50	357	1.3	0.0015
2d	287/299/324	1.74/1.71/2.10	370		0.0008
$2d + Ni^{2+}$	364	0.23	364	1.1	0.0010
$2d + Cu^{2+}$	365	0.41	362	80	0.26
$2d + Zn^{2+}$	366	0.10	364	1.9	0.0014
$2d + Cd^{2+}$	367	0.03	373	2.2	0.0011
$2d + Hg^{2+}$	364	0.50	363	1.7	0.0042
$2d + Pb^{2+}$	375	0.75	364	1.3	0.0015
3a	254/310	1.01/3.75	370		0.0004
$3a + Ni^{2+}$	315/378	2.94/0.51	367	1.4	0.0016
$3a + Cu^{2+}$	296/345	2.66/1.55	366	1000	0.49
$3a + Zn^{2+}$	326	3.76	365	5.2	0.0038
$3a + Cd^{2+}$	328	4.06	381	1.5	0.0024
$3a + Hg^{2+}$	338	4.15	368	29	0.0032
$3a + Pb^{2+}$	333	3.69	367	1.1	0.0034
3 _b	238/308	1.02/3.37	371		0.0004
$3b + Ni^{2+}$	310/365	3.10/0.23	358	1.1	0.0032
$3b + Cu^{2+}$	327	1.71	361	260	0.36
$3b + Zn^{2+}$	313	3.23	364	1.3	0.0018
$3b + Cd^{2+}$	319	3.31	379	1.1	0.0025
$3b + Hg^{2+}$	333	3.43	364	8.1	0.0047
$3b + Pb^{2+}$	330	3.22	366	1.1	0.0025
3c	228/308	0.94/3.01	370		0.0005
$3c + Ni^{2+}$	309/365	3.03/0.24	372	1.1	0.0029
$3c + Cu^{2+}$	319	1.01	360	145	0.33
$3c + Zn^{2+}$	311	2.87	372	1.2	0.0030
$3c + Cd^{2+}$	314	2.95	385	1.1	0.0007
$3c + Hg^{2+}$	332	3.07	365	6.3	0.0047
$3c + Pb^{2+}$	330	2.74	366	1.1	0.0038
3d	236/309	1.27/3.26	371		0.0004
$3d + Ni^{2+}$	310/371	2.92/0.29	370	$1.1\,$	0.0024
$3d + Cu^{2+}$	319/376	1.31/0.12	368	136	0.29
$3d + Zn^{2+}$	311/374		369	1.0	0.0017
		3.11/0.06			
$3d + Cd^{2+}$	314	3.15	396	1.0	0.0010
$3d + Hg^{2+}$	334/390	3.11/0.18	371	2.9	0.0039
$3d + Pb^{2+}$	332	2.88	372	1.1	0.0026

Table 1 Absorption and fluorescence spectral parameters of 2 and 3, and 2 and 3 in the presence of 25 equivalents of metal ion in CH₃CN

^a Fluorescence enhancement factor, the ratio of the intensity of **2** and **3** in the presence of 25 equivalents of metal ion to that in the absence of metal ion. *^b* Fluorescence quantum yields of **2** and **3**, and **2** and **3** in the presence of 25 equivalents of metal ion were measured using quinine sulfate as a standard (0.546 in 0.5 M H2SO4: Demas, J. N.; Crobys, G. A., *J. Phys. Chem.* **1971**, *75*, 991–1024). The measurement errors were up to 50% and 15% for *N*-acylhydrazones and their metal complexes, respectively.

emission and the high selectivity for Cu²⁺ therefore could not be simply attributed to Cu²⁺ coordination to *N*-acylhydrazones.

The fluorescence emission of a ligand can in principle be affected not only by metal ion coordination, but by a metal ion involved reaction as well.¹⁰ The fact that the enhancement by Cu²⁺ of the fluorescence of **2** and **3** becomes higher when the substituent X is more electron-donating suggested that a redox reaction might occur. Indeed, it was reported that *N*-acylhydrazones underwent oxidative cyclization to 1,3,4-oxadiazoles by several oxidants.¹¹ Cu(ClO₄)₂ in CH₃CN could be an effective oxidant,

Fig. 4 Normalized fluorescence spectra of **2** and **3** in the presence of 25 equivalents of Cu²⁺ in CH₃CN at 25 [°]C.

Fig. 5 Normalized fluorescence spectra of **2c** and **5–12** and FEF values in the presence of 25 equivalents of Cu²⁺ in CH₃CN at 25 °C.

Scheme 2 Structures of the extended variety of *N*-acylhydrazones.

since the Cu^{2+}/Cu^{+} couple in CH₃CN reportedly has a high reduction potential due to the stabilization of Cu⁺ by solvent coordination.¹² We therefore hypothesized that Cu^{2+} acted as an oxidant in CH₃CN to result in an oxidative cyclization of *N*-acylhydrazones into 1,3,4-oxadiazoles. As no credible signals were detected in the cyclic voltammograms of the reported *N*acylhydrazones in CH₃CN, we were unable to directly confirm this hypothesis on the basis of redox potentials data. Alternatively, crucial evidence supporting this hypothesis was obtained from the independent syntheses of 1,3,4-oxadiazoles by reactions of *N*-acylhydrazones **3** with $Cu(CIO₄)₂$ in CH₃CN. The oxidative cyclization products 1,3,4-oxadiazoles **13** (Scheme 3, Table S1†) were fully characterized by HRMS, ¹H NMR, and ¹³C NMR. Fluorescence excitation and emission spectra of the synthesized oxidative cyclization product **13a** were found identical to those of **3a** in the presence of 1.0 equivalent of Cu^{2+} (Fig. S11†). Obviously the observed fluorescence enhancement of $3a$ by Cu^{2+} was not caused by Cu^{2+} coordination but instead by the oxidative cyclization reaction. In order to confirm the role of $Cu²⁺$ in the reaction of *N*-acylhydrazones in CH₃CN, EPR experiments in $CH₃CN$ at 100 K were carried out in which the $Cu²⁺$ concentration was made constant while the **3a** concentration varied. It was found that the EPR signal of Cu^{2+} was indeed attenuated with increasing **3a** concentration (Fig. 6). This points to the conversion of Cu^{2+} into diamagnetic Cu^{+} that can be stabilized in CH₃CN. A mechanism of the oxidative cyclization by Cu^{2+} was therefore suggested (Scheme 3), which forms the basis of this new kind of redox-based chemodosimeter for Cu²⁺.

Fig. 6 EPR spectra of 1.0 mM Cu^{2+} in CH_3CN at 100 K with increasing concentration of **3a**.

Scheme 3 Proposed oxidative cyclization of *N*-acylhydrazones by Cu²⁺ in CH₃CN.

The absorption and fluorescence spectra of the oxidative cyclization product 13a in CH₃CN, hardly changed upon the addition of

up to 25 equivalents Cu^{2+} (Fig. S12†). This explained the observed level-off of FEFs of 2 and 3 at higher Cu²⁺ concentration (Fig. 2). The observation that the absorption spectrum of 4 in CH₃CN undergoes substantial variation whereas it remains nonfluorescent in the presence of Cu^{2+} (Fig. 3) suggests that a simple coordination of Cu2+ to *N*-acylhydrazones in the ground state does not lead to an enhancement in the fluorescence of *N*-acylhydrazones. It was found that the fluorescence quantum yield of **13a** ($\Phi = 0.725$) in CH₃CN is *ca*.1800-fold that of **3a** ($\Phi = 4 \times 10^{-4}$). It is hence made clear that the dramatic fluorescence enhancement results fully from the oxidative cyclization by Cu^{2+} in CH_3CN of the nonfluorescent *N*-acylhydrazones which leads to the highly fluorescent rigid 1,3,4-oxadiazoles. The fluorescence response selectivity for Cu^{2+} is therefore due to its oxidation capability in CH_3CN , which makes it differ from the other metal ions tested. Hence the herein reported *N*-acylhydrazones do not act as metal coordinating chemosensors but instead fluorescent chemodosimeters for Cu²⁺.

The high fluorescence enhancement factor of **3a** upon the addition of Cu^{2+} in CH₃CN shows great potential for application to the fluorescent sensing of $Cu²⁺$ at a low concentration level. The fluorescence of $3a(0.5 \mu M)$ in the presence of 0.5 equivalents of Cu^{2+} levels off rapidly within 2 min (Fig. S13†). Fluorescence titration of **3a** (0.5 μ M) shows a linear response toward Cu²⁺ over 25.0 nM to 0.25 μ M in CH₃CN, with a detection limit of 3.5 nM (Fig. $S14\dagger$). The fluorescent sensing of Cu²⁺ by **3a** in H₂O–CH₃CN solutions was also tested. The optimal conditions obtained for the assay (Fig. $S15-S17\dagger$) were to carry it out in a 20:80 (v/v) mixture of CH_3CN and H_2O at pH 7.2 (5 mM Tris-HCl buffer, 0.1 M KCl) after heating at 50 *◦*C for 3 h. In this case the detection limit was 0.30 μ M. The FEF was proportional to the Cu²⁺ concentration over 1.0–160 μ M at a **3a** concentration of 10 μ M (Fig. 7). The fluorescence enhancement of $3a$ by Cu^{2+} was also found to be independent of the counter anions of the Cu^{2+} such as $NO₃⁻, Cl⁻,$ AcO⁻, ClO₄⁻, and SO₄²⁻ in aqueous CH₃CN solutions (Fig. S18†).

Fig. 7 (a) Fluorescence spectra of **3a** (10 μ M) in a mixture of CH₃CN and Tris-HCl (5 mM, pH 7.2, 0.1 M KCl) aqueous buffer solution (20/80, v/v) in the presence of increasing concentrations of Cu^{2+} and (b) linear response curve. The excitation wavelength was 283 nm.

The fluorescence of $3a$ in 80% H_2O –C H_3CN (v/v) was found to be hardly altered by the other metal ions tested: Co^{2+} , Ni^{2+} , Zn^{2+} , Cd^{2+} , Hg²⁺, Mg²⁺, Ca²⁺, and Ba²⁺. The selectivity for Cu²⁺ over these metal ions remains remarkably high and the FEF of Cu^{2+}

is only slightly influenced by the addition of either 5 equivalents of each or all of the interference metal ions, Fig. 8. In aqueous solutions, however, the response reaction was substantially slowed down, likely due to the efficient hydration of $Cu²⁺$. Means of dehydrating Cu^{2+} and/or the stabilizing of Cu^{+} in aqueous solutions are expected to enhance the reaction to a reasonable level that might allow efficient aqueous phase assays. This is currently underway in this laboratory.

Fig. 8 (a) Fluorescence enhancement factors of **3a** with individual ions (2.5 mM) and (b) Relative fluorescence responses to Cu^{2+} (100 μ M) plus interference metal ion (500 μ M) in a mixture of CH₃CN and Tris-HCl (5 mM, pH 7.2, 0.1 M KCl) aqueous buffer solution (20/80, v/v). "All" means the relative fluorescence response of $3a$ to Cu^{2+} (100 μ M) plus all the interference metal ions tested, Co^{2+} , Ni^{2+} , Zn^{2+} , Cd^{2+} , Hg^{2+} , Mg^{2+} , Ca^{2+} , and Ba²⁺ at 500 μ M each.

Conclusions

Highly selective and dramatic enhancements by Cu^{2+} of the fluorescence in CH_3CN and CH_3CN-H_2O of a variety of *N*-acylhydrazones were observed and were shown to result from an oxidative cyclization by Cu^{2+} of the originally nonfluorescent *N*-acylhydrazones to the highly fluorescent rigid 1,3,4-oxadiazoles. In agreement with this conclusion was the structured emission from the CH₃CN solution of *N*-acylhydrazones and Cu²⁺. To the best of our knowledge, this is the first-set of reported chemodosimeters following an oxidative cyclization reaction that exhibits outstanding selectivity for Cu^{2+} with a dramatic fluorescence enhancement output. The chemodosimeters can be applied to sense Cu^{2+} at nanomolar levels in CH₃CN. Both high selectivity and sensitivity over other metal ions tested were obtained in a $20:80$ (v/v) mixture of CH₃CN and Tris-HCl aqueous buffer solution, despite a much slower reaction rate. Although at the moment we are unable to set a structural limit for an *N*-acylhydrazone to be facilely oxidized by Cu^{2+} , as all those reported here undergo efficient oxidation cyclization, we expect that this oxidative cyclization reaction could be taken as an alternative route to 1,3,4-oxadiazoles, efficient electron acceptors employed in optoelectronic materials.**¹³** As redox reactions are easily made selective for a reductant or an oxidant and even made reversible, creating chemodosimeters following the redox reaction strategy illustrated here shall be of general applicability.

Experimental

Chemicals used for syntheses were commercially available. Solvents for spectral titrations were redistilled CH₃CN and deionized water.

Absorption and fluorescence spectra were recorded on Varian Cary 300 spectrophotometer and Hitachi F-4500 fluorescence spectrophotometer, respectively. Solutions were measured in a 1 cm quartz cell. Fluorescence quantum yields were measured using quinine sulfate as a standard $(0.546 \text{ in } 0.5 \text{ M } H_2SO_4)$. ¹H NMR and 13C NMR were acquired on Bruker AV400 and Varian Unity+ 500 MHz NMR spectrometers. HRMS were obtained on a Micromass LCT spectrometer using methanol as the solvent. EPR experiments were carried out on a Bruker EMX-10/12 spectrometer.

All spectral titrations were carried out by keeping the sensor concentration constant while varying the metal ion concentration. Metal ions were used as their perchlorates. In the pH titration experiments, the solution pH was adjusted by dilute NaOH and HCl solutions that contained the same concentration of metal ion. Potassium chloride was employed to maintain solution ionic strength.

Preparation and characterization of 2–12 and 13.

2–12 were facilely synthesized from equimolar amounts of *N*- (substituted-benzoyl)hydrazine (2 mmol) with aldehyde or ketone (2 mmol) by a one-step reaction in ethanol, respectively. The mixture were refluxed for 3 h and then cooled down to room temperature. The crude products were isolated by filtration, and then recrystallized from absolute ethanol. New compounds were fully characterized by 1H NMR, ^{13}C NMR, and HRMS.

13 was synthesized from **3** (2 mmol) with 5 equivalents of $Cu(CIO₄)₂$ (10 mmol) in CH₃CN that were refluxed with stirring for 24 h, and then evaporated in vacuo. Aqueous ethylenediamine (1.0 mol $L^{-1} \times 25$ mL) solution was added and the solution was then extracted by ethyl acetate $(3 \times 20 \text{ mL})$. The combined organic layer was thoroughly washed with water $(3 \times 20 \text{ ml})$, dried over anhydrous Na2SO4, and then concentrated under vacuum, then purified by column chromatography on silica gel with ethyl acetatepetroleum ether (1:5) as eluent. **13** was fully characterized by ¹H NMR, ¹³C NMR, and HRMS to confirm the occurrence of oxidative cyclization reaction.

N¢**-(2-Methoxybenzylidene)-4-ethoxybenzohydrazide (2a).** ¹ H NMR (500 MHz, DMSO- d_6 , TMS): $\delta = 1.35$ (t, 3H, $J = 7.0$ Hz), 3.87 (s, 3H), 4.09–4.13 (m, 2H), 7.02 (t, 3H, *J* = 8.0 Hz), 7.11 (d, 1H, $J = 8.0$ Hz), 7.41 (t, 1H, $J = 7.5$ Hz), 7.87 (d, 1H, $J = 7.0$ Hz), 7.92 (d, 2H, $J = 8.5$ Hz), 8.81 (s, 1H), 11.72 ppm (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6 , TMS): $\delta = 14.4, 55.6, 63.3, 111.7,$ 113.9, 120.6, 122.4, 125.2, 125.3, 129.4, 131.2, 142.4, 157.6, 161.1, 162.2 ppm; HRMS (ESI): m/z: calcd for $C_{17}H_{19}N_2O_3$: 299.1396 $[M + H^+]$; found: 299.1395 $[M + H^+]$.

*N'***-(2-Methoxybenzylidene)-4-methylbenzohydrazide (2b).** ¹H NMR (500 MHz, DMSO- d_6 , TMS): $\delta = 2.38$ (s, 3H), 3.87 (s, 3H), 7.03 (t, 1H, *J* = 7.5 Hz), 7.11(d, 1H, *J* = 8.5 Hz), 7.33 (d, 2H, *J* = 8.0 Hz), 7.42 (t, 1H, *J* = 7.5 Hz), 7.85 (d, 2H, *J* = 8.0 Hz), 7.88 (d, 1H, $J = 8.5$ Hz), 8.82 (s, 1H), 11.78 ppm (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6 , TMS): $\delta = 20.9, 55.5, 111.7, 120.6,$ 122.4, 125.4, 127.5, 128.8, 130.4, 131.3, 141.6, 142.9, 157.6, 162.7 ppm; HRMS (ESI): m/z: calcd for $C_{16}H_{17}N_2O_2$: 269.1290 [M + H⁺]; found 269.1295 [M + H⁺].

N¢**-(2-Methoxybenzylidene)benzohydrazide (2c).** ¹ H NMR $(500 \text{ MHz}, \text{ DMSO-}d_6, \text{ TMS})$: $\delta = 3.87$ (s, 3H), 7.04 (t, 1H, $J =$ 7.5 Hz), 7.12 (d, 1H, *J* = 8.5 Hz), 7.43 (t, 1H, *J* = 7.5 Hz), 7.52 (t, 2H, *J* = 7.5 Hz), 7.59 (t, 1H, *J* = 7.0 Hz), 7.88 (d, 1H, *J* = ¹³C NMR (125 MHz, DMSO- d_6 , TMS): $\delta = 55.5$, 111.6, 120.6, 122.3, 125.4, 127.5, 128.3, 131.4, 131.5, 133.3, 143.2, 157.7, 162.9 ppm; HRMS (ESI): m/z: calcd for $C_{15}H_{15}N_2O_2$: 255.1134 [M + H^+]; found 255.1141 [M + H⁺].

N¢**-(2-Methoxybenzylidene)-4-chlorobenzohydrazide (2d).** ¹ H NMR (500 MHz, DMSO- d_6 , TMS): $\delta = 3.87$ (s, 3H), 7.03 (t, 1H, *J* = 7.5 Hz), 7.12 (d, 1H, *J* = 8.0 Hz), 7.43 (t, 1H, *J* = 7.5 Hz), 7.61 (d, 2H, *J* = 8.0 Hz), 7.88 (d, 1H, *J* = 8.5 Hz), 7.96 (d, 2H, $J = 8.5$ Hz), 8.81 (s, 1H), 11.90 ppm (s, 1H); ¹³C NMR $(125 \text{ MHz}, \text{ DMSO-}d_6, \text{TMS})$: $\delta = 55.5, 111.7, 120.6, 122.2, 125.4,$ 128.4, 129.4, 131.5, 132.0, 136.5, 143.5, 157.7, 161.8 ppm; HRMS (ESI): m/z: calcd for $C_{15}H_{14}C/N_2O_2$: 289.0744 [M + H⁺]; found 289.0754 [M + H⁺].

4-Ethoxy-*N*¢**-(furan-2-ylmethylene)benzohydrazide (3a).** ¹ H NMR (400 MHz, DMSO- d_6 , TMS): $\delta = 1.35$ (t, 3H, $J = 7.0$ Hz), 4.11 (m, 2H), 6.64 (m, 1H), 6.91 (d, 1H, *J* = 3.2 Hz), 7.04 (d, 2H, *J* = 8.8 Hz), 7.85 (s, 1H), 7.87 (d, 2H, *J* = 8.8 Hz), 8.33 (s, 1H), 11.66 ppm (s, 1H); ¹³C NMR (100 MHz, DMSO- d_6 , TMS): $\delta =$ 14.4, 63.3, 112.1, 113.1, 114.0, 125.1, 129.4, 136.9, 145.0, 149.5, 161.2, 162.4 ppm; HRMS (ESI): m/z: calcd for $C_{14}H_{15}N_2O_3$: 259.1083 [M + H⁺]; found 259.1077 [M + H⁺].

N \prime **-(Furan-2-ylmethylene)-4-methylbenzohydrazide** $(3b).¹H$ NMR (400 MHz, DMSO- d_6 , TMS): $\delta = 2.38$ (s, 3H), 6.64 (s, 1H), 6.92 (s, 1H), 7.33 (d, 2H, *J* = 7.6 Hz), 7.81 (d, 2H, *J* = 7.6 Hz), 7.85 (s, 1H), 8.34 (s, 1H), 11.73 ppm (s, 1H); 13C NMR (100 MHz, DMSO- d_6 , TMS): $\delta = 20.9, 112.1, 113.3, 127.5,$ 128.9, 130.4, 137.2, 141.7, 145.0, 149.4, 162.8 ppm; HRMS (ESI): m/z: calcd for $C_{13}H_{13}N_2O_2$: 229.0977 [M + H⁺]; found 229.0977 $[M + H^*].$

N¢**-(Furan-2-ylmethylene)benzohydrazide (3c).** ¹ H NMR (400 MHz, DMSO- d_6 , TMS): $\delta = 6.65$ (s, 1H), 6.94 (s, 1H), 7.53 $(t, 2H, J = 6.4 \text{ Hz})$, 7.60 $(t, 1H, J = 6.8 \text{ Hz})$, 7.86 $(s, 1H)$, 7.90 $(d,$ 2H, *J* = 7.2 Hz), 8.35 (s, 1H), 11.80 ppm (s, 1H); 13C NMR (100 MHz, DMSO- d_6 , TMS): $\delta = 112.1, 113.4, 127.5, 128.4, 131.7,$ 133.3, 137.5, 145.1, 149.4, 163.0 ppm; HRMS (ESI): m/z: calcd for $C_{12}H_{11}N_2O_2$: 215.0821 [M + H⁺]; found 215.0819 [M + H⁺].

4-Chloro-*N'*-(furan-2-ylmethylene)benzohydrazide $(3d).$ ¹H NMR (400 MHz, DMSO- d_6 , TMS): $\delta = 6.65$ (m, 1H), 6.96 (d, 1H, *J* = 3.2 Hz), 7.62 (d, 2H, *J* = 8.4 Hz), 7.87 (s, 1H), 7.93 (d, 2H, *J* = 8.4 Hz), 8.34 (s, 1H), 11.86 ppm (s, 1H); 13C NMR (100 MHz, DMSO- d_6 , TMS): $\delta = 112.1, 113.7, 128.5, 129.4, 132.0,$ 136.5, 137.7, 145.2, 149.3, 161.9 ppm; HRMS (ESI): m/z: calcd for $C_{12}H_{10}CIN_2O_2$: 249.0431 [M + H⁺]; found 249.0427 [M + H⁺].

4-Ethoxy-*N*¢**-(1-(furan-2-yl)ethylidene)benzohydrazide (4).** ¹ H NMR (400 MHz, DMSO- d_6 , TMS): $\delta = 1.35$ (t, 3H, $J = 7.0$ Hz), 2.28 (s, 3H), 4.11 (m, 2H), 6.61 (m, 1H), 6.95 (s, 1H), 7.02 (d, 2H, *J* = 8.8 Hz), 7.80 (s, 1H), 7.86 (d, 2H, *J* = 8.8 Hz), 10.52 ppm (s, 1H); ¹³C NMR (100 MHz, DMSO- d_6 , TMS): $\delta = 13.7, 14.5,$ 63.3, 111.2, 111.8, 113.8, 125.7, 129.9, 144.5, 145.1, 148.2, 151.8, 161.1 ppm; HRMS (ESI): m/z: calcd for $C_{15}H_{17}N_2O_3$: 273.1239 $[M + H^*]$; found 273.1245 $[M + H^*]$.

N \prime ⁻(2-Ethoxybenzylidene)-4-ethoxybenzohydrazide $(5). \quad {}^1H$ NMR (400 MHz, DMSO- d_6 , TMS): $\delta = 1.34$ -1.41 (m, 6H), 4.09–4.15 (m, 4H), 7.00 (d, 1H, $J = 7.6$ Hz), 7.03 (d, 2H, $J = 8.8$ Hz), 7.09 (d, 1H, *J* = 8.0 Hz), 7.39 (t, 1H, *J* = 7.6 Hz), 7.88 (d, 1H, *J* = 7.6 Hz), 7.91 (d, 2H, *J* = 8.8 Hz), 8.80 (s, 1H), 11.75 ppm (s, 1H); ¹³C NMR (100 MHz, DMSO- d_6 , TMS): $\delta = 14.5$, 14.6, 63.3, 63.7, 112.7, 114.0, 120.6, 122.6, 125.2, 125.4, 129.5, 131.3, 142.5, 157.0, 161.2, 162.4 ppm; HRMS (ESI): m/z: calcd for $C_{18}H_{21}N_2O_3$: 313.1552 [M + H⁺]; found 313.1556 [M + H⁺].

N¢**-(2-Propoxybenzylidene)-4-ethoxybenzohydrazide (6).** ¹ H NMR (400 MHz, DMSO- d_6 , TMS): $\delta = 1.05$ (t, 3H, $J = 7.2$ Hz), 1.36 (t, 3H, $J = 7.2$ Hz), 1.79 (m, 2H), 4.02 (t, 2H, $J = 6.4$ Hz), 4.11 (m, 2H), 6.99 (d, 1H, *J* = 7.2 Hz), 7.04 (d, 2H, *J* = 8.8 Hz), 7.08 (d, 1H, *J* = 8.4 Hz), 7.38 (m, 1H), 7.87 (s, 1H), 7.91 (d, 2H, $J = 8.8$ Hz), 8.80 (s, 1H), 11.76 ppm (s, 1H); ¹³C NMR (100 MHz, DMSO- d_6 , TMS): $\delta = 10.5$, 14.4, 22.0, 63.3, 69.4, 112.6, 113.9, 120.5, 122.6,125.3, 125.4, 129.5, 131.2, 142.4, 157.1, 161.1, 162.4 ppm; HRMS (ESI): m/z: calcd for $C_{19}H_{23}N_2O_3$: 327.1709 [M + H^{\dagger} ; found 327.1703 [M + H^{\dagger}].

N¢**-(2-Isopropoxybenzylidene)-4-ethoxybenzohydrazide (7).** ¹ H NMR (400 MHz, DMSO- d_6 , TMS): $\delta = 1.32$ (d, 6H, $J = 6.0$ Hz), 1.36 (t, 3H, $J = 6.8$ Hz), 4.11 (m, 2H), 4.70 (m, 1H), 7.00 (t, 1H, *J* = 7.2 Hz), 7.03 (d, 2H, *J* = 8.8 Hz), 7.12 (d, 1H, *J* = 8.0 Hz), 7.37 (t, 1H, *J* = 8.0 Hz), 7.87 (d, 1H, *J* = 8.0 Hz), 7.91 (d, 2H, $J = 8.8$ Hz), 8.76 (s, 1H), 11.72 ppm (s, 1H); ¹³C NMR (100 MHz, DMSO- d_6 , TMS): $\delta = 14.4, 21.8, 63.3, 70.4, 113.9, 114.5, 120.6,$ 123.6, 125.3, 125.6, 129.5, 131.1, 142.8, 156.0, 161.1, 162.3 ppm; HRMS (ESI): m/z: calcd for $C_{19}H_{23}N_2O_3$: 327.1709 [M + H⁺]; found 327.1705 [M + H⁺].

4-Ethoxy-*N*¢**-(thiophen-2-ylmethylene)benzohydrazide (8).** ¹ H NMR (400 MHz, DMSO- d_6 , TMS): $\delta = 1.35$ (t, 3H, $J = 6.8$) Hz), 4.11 (m, 2H), 7.04 (d, 2H, *J* = 8.8 Hz), 7.14 (m, 1H), 7.45 (d, 1H, *J* = 3.2 Hz), 7.66 (d, 1H, *J* = 4.8 Hz), 7.88 (d, 2H, *J* = 8.8 Hz), 8.67 (s, 1H), 11.68 ppm (s, 1H); 13C NMR (100 MHz, $DMSO-d_6$, TMS): $\delta = 14.4, 63.3, 114.0, 125.1, 127.7, 128.6, 129.4,$ 130.5, 139.2, 142.2, 161.2, 162.3 ppm; HRMS (ESI): m/z: calcd for $C_{14}H_{15}N_2O_2S$: 275.0854 [M + H⁺]; found 275.0855 [M + H⁺].

N \prime **-Benzylidene-4-ethoxybenzohydrazide** (9). ¹H NMR (400 MHz, DMSO- d_6 , TMS): $\delta = 1.36$ (t, 3H, $J = 7.0$ Hz), 4.09–4.14 (m, 2H), 7.05 (d, 2H, *J* = 8.8 Hz), 7.43–7.48 (m, 3H), 7.73 (d, 2H, *J* = 6.4 Hz), 7.91 (d, 2H, *J* = 8.8 Hz), 8.45 (s, 1H), 11.73 ppm (s, 1H); ¹³C NMR (100 MHz, DMSO- d_6 , TMS): $\delta =$ 14.4, 63.3, 114.0, 125.2, 126.9, 128.7, 129.5, 129.8, 134.4, 147.0, 161.2, 162.5 ppm; HRMS (ESI): m/z: calcd for $C_{16}H_{17}N_2O_2$: 269.1290 [M + H⁺]; found 269.1289 [M + H⁺].

4-Ethoxy-*N*¢**-(2-methylpropylidene)benzohydrazide (10).** ¹ H NMR (400 MHz, CD₃CN): $\delta = 1.10$ (d, 6H, $J = 6.8$ Hz), 1.38 (t, 3H, *J* = 7.0 Hz), 2.51–2.59 (m, 1H), 4.07–4.12 (m, 2H), 6.96 (d, 2H, *J* = 7.2 Hz), 7.51 (s, 1H), 7.77 (d, 2H, *J* = 8.4 Hz), 9.67 ppm (s, 1H); ¹³C NMR (400 MHz, DMSO- d_6 , TMS): $\delta = 14.4$, 19.6, 31.0, 63.2, 113.9, 125.4, 129.3, 155.9, 161.0, 162.2 ppm; HRMS (ESI): m/z: calcd for $C_{13}H_{19}N_2O_2$: 235.1447 [M + H⁺]; found 235.1446 [M + H⁺].

4-Phenyl-*N*¢**-(2-methoxybenzylidene)benzohydrazide (11).** ¹ H NMR (400 MHz, DMSO- d_6 , TMS): $\delta = 3.88$ (s, 3H), 7.05 (t, 1H, *J* = 7.6 Hz), 7.13 (d, 1H, *J* = 8.4 Hz), 7.43 (m, 2H), 7.52 (t, 2H, *J* = 7.6 Hz), 7.76 (d, 2H, *J* = 7.6 Hz), 7.84 (d, 2H, *J* = 8.4 Hz), 7.91 (d, 1H, *J* = 6.8 Hz), 8.05 (d, 2H, *J* = 8.4 Hz), 8.86 (s, 1H), 11.92 ppm (s, 1H); ¹³C NMR (100 MHz, DMSO- d_6 , TMS); $\delta = 55.6, 111.8, 120.7, 122.3, 125.4, 126.6, 126.8, 128.1, 128.2,$ 129.0, 131.5, 132.0, 139.0, 143.1, 157.7, 162.5 ppm; HRMS (ESI): m/z: calcd for $C_{21}H_{19}N_2O_2$: 331.1447 [M + H⁺]; found 331.1451 $[M + H^*].$

N \prime **-(2-Methoxybenzylidene)-2-naphthohydrazide** $(12). \quad {}^{1}H$ NMR (400 MHz, DMSO- d_6 , TMS): $\delta = 3.89$ (s, 3H), 7.06 (t, 1H, *J* = 7.2 Hz), 7.13 (d, 1H, *J* = 8.4 Hz), 7.45 (t, 1H, *J* = 7.6 Hz), 7.64 (m, 2H), 7.92 (d, 1H, *J* = 7.6 Hz), 8.01–8.09 (m, 4H), 8.58 (s, 1H), 8.88 (s, 1H), 12.03 ppm (s, 1H); 13C NMR (100 MHz, DMSO- d_6 , TMS): $\delta = 55.6$, 111.8, 120.7, 122.3, 124.2, 125.4, 126.8, 127.6, 127.8, 127.9, 128.0, 128.3, 130.6, 131.5, 132.0, 134.2, 143.1, 157.7, 162.8 ppm; HRMS (ESI): m/z: calcd for $C_{19}H_{17}N_2O_2$: 305.1290 [M + H⁺]; found 305.1281 [M + H⁺].

2-(4-Ethoxyphenyl)-5-furan-2-yl-1,3,4-oxadiazole (13a). ¹ H NMR (400 MHz, DMSO- d_6 , TMS): $\delta = 1.37$ (t, 3H, $J = 7.0$ Hz), 4.14 (m, 2H), 6.83 (m, 1H), 7.16 (d, 2H, *J* = 8.8 Hz), 7.43 (d, 1H, *J* = 3.6 Hz), 8.00 (d, 2H, *J* = 8.8 Hz), 8.08 ppm (d, 1H, *J* = 1.2 Hz); ¹³C NMR (100 MHz, DMSO- d_6 , TMS): $\delta = 14.4, 63.5,$ 112.6, 114.4, 115.1, 115.2, 128.5, 138.6, 146.8, 156.4, 161.4, 163.1 ppm; HRMS (ESI): m/z: calcd for $C_{14}H_{13}N_2O_3$: 257.0926 [M + H⁺]; found 257.0927 [M + H⁺].

2-Furan-2-yl-5-*p***-tolyl-1,3,4-oxadiazole (13b).** ¹ H NMR (400 MHz, CDCl₃, TMS): $\delta = 2.44$ (s, 3H), 6.62 (m, 1H), 7.23 (d, 1H, *J* = 3.2 Hz), 7.33 (d, 2H, *J* = 8.0 Hz), 7.67 (d, 1H, *J* = 1.2 Hz), 8.01 ppm (d, 2H, $J = 8.0$ Hz); ¹³C NMR (100 MHz, CDCl₃, TMS): $\delta =$ 21.7, 112.2, 113.9, 120.8, 127.0, 129.8, 139.6, 142.5, 145.6, 157.4, 164.2 ppm; HRMS (ESI): m/z: calcd for $C_{13}H_{11}N_2O_2$: 227.0821 $[M + H^*]$; found 227.0822 $[M + H^*]$.

2-Furan-2-yl-5-phenyl-1,3,4-oxadiazole (13c). ¹ H NMR (400 MHz, CDCl₃, TMS): $\delta = 6.63$ (m, 1H), 7.24 (d, 1H, $J = 3.6$ Hz), 7.52 (s, 1H), 7.54 (m, 2H), 7.67 (d, 1H, *J* = 1.2 Hz), 8.13 ppm (m, 2H); ¹³C NMR (100 MHz, CDCl₃, TMS): δ = 112.2, 114.0, 123.5, 127.0, 129.0, 131.8, 139.4, 145.7, 157.4, 163.9 ppm; HRMS (ESI): m/z: calcd for $C_{12}H_9N_2O_2$: 213.0664 [M + H⁺]; found 213.0669 $[M + H^*].$

2-(4-Chlorophenyl)-5-furan-2-yl-1,3,4-oxadiazole (13d). ¹ $(13d).$ ¹H NMR (400 MHz, CDCl₃, TMS): $\delta = 6.63$ (m, 1H), 7.25 (d, 1H, $J = 3.6$ Hz), 7.51(d, 2H, $J = 8.8$ Hz), 7.68 (t, 1H, $J = 0.8$ Hz), 8.06 ppm (d, 2H, $J = 8.4$ Hz); ¹³C NMR (100 MHz, CDCl₃, TMS): $\delta = 112.2, 114.3, 122.0, 128.2, 129.5, 138.1, 139.3, 145.8,$ 157.5, 163.1 ppm; HRMS (ESI): m/z: calcd for $C_{12}H_8C/N_2O_2$: 247.0274 [M + H⁺]; found 247.0272 [M + H⁺].

Acknowledgements

This work was supported by the NSFC of China (20425518, 20675069), NFFTBS (J0630429), and the Ministry of Education (MOE) of China.

Notes and references

- 1 (*a*) W. G. Skene and J. M. Lehn, *Proc. Natl. Acad. Sci. U. S. A.*, 2004, **101**, 8270–8275; (*b*) O. Ramström, S. Lohmann, T. Bunyapaiboonsri and J. M. Lehn, *Chem. Eur. J.*, 2004, **10**, 1711–1715; (*c*) T. Ono, T. Nobori and J. M. Lehn, *Chem. Commun.*, 2005, 1522–1524; (*d*) J. M. Lehn, *Prog. Polym. Sci.*, 2005, **30**, 814–831; (*e*) M. Sugiura and S. Kobayashi, *Angew. Chem., Int. Ed.*, 2005, **44**, 5176–5186; (*f*) G. K. Friestad, *Eur. J. Org. Chem.*, 2005, 3157–3172.
- 2 (*a*) C.-Q. Jiang, B. Tang, R.-Y. Wang and J.-C. Yen, *Talanta*, 1997, **44**, 197–202; (*b*) B. Tang, F. Han and G.-Y. Zhang, *Talanta*, 2002, **56**, 603–611; (*c*) B. Tang, J. Zhang and Z.-Z. Chen, *Spectrochim. Acta A*, 2003, **59**, 2519–2526; (*d*) Y. Xiang, A.-J. Tong, P.-Y. Jin and Y. Ju, *Org. Lett.*, 2006, **8**, 2863–2866; (*e*) D.-Y. Wu, W. Huang, C.-Y. Duan, Z.-H. Lin and Q.-J. Meng, *Inorg. Chem.*, 2007, **46**, 1538–1540; (*f*) Y. B. Wei and M. L. Guo, *Angew. Chem., Int. Ed.*, 2007, **46**, 4722– 4725.
- 3 (*a*) N. R. Sangeetha, K. Baradi, R. Gupta, C. K. Pal, V. Manivannan and S. Pal, *Polyhedron*, 1999, **18**, 1425–1429; (*b*) Z.-Y. Yang, R.-D. Yang, F.-S. Li and K.-B. Yu, *Polyhedron*, 2000, **19**, 2599–2604; (*c*) Z. H. Chohan, *Synth. React. Inorg. Met. Org. Chem.*, 2001, **31**, 1–16; (*d*) S. Choudhary and J. R. Morrow, *Angew. Chem., Int. Ed.*, 2002, **41**, 4096–4098; (*e*) P. F. Lee, C.-T. Yang, D.-M. Fan, J. J. Vittal and J. D. Ranford, *Polyhedron*, 2003, **22**, 2781–2786; (*f*) L. K. Charkoudian, D. M. Pham and K. J. Franz, *J. Am. Chem. Soc.*, 2006, **128**, 12424–12425; (*g*) J. Becher, I. Seidel, W. Plass and D. Klemm, *Tetrahedron*, 2006, **62**, 5675–5681.
- 4 (*a*) A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, *Chem. Rev.*, 1997, **97**, 1515–1566; (*b*) B. Valeur and I. Leray, *Coord. Chem. Rev.*, 2000, **205**, 3–40; (*c*) J. S. Kim and D. T. Quang, *Chem. Rev.*, 2007, **107**, 3780–3799.
- 5 R. Krämer, Angew. Chem., Int. Ed., 1998, 37, 772-773.
- 6 Z.-C. Wen, R. Yang, H. He and Y -B. Jiang, *Chem. Commun.*, 2006, 106–108.
- 7 (*a*) P. Ghosh and P. K. Bharadwaj, *J. Am. Chem. Soc.*, 1996, **118**, 1553– 1554; (*b*) B. Ramachandram and A. Samanta, *Chem. Commun.*, 1997, 1037–1038; (*c*) B. Ramachandram and A. Samanta, *J. Phys. Chem. A*, 1998, **102**, 10579–10587; (*d*) K. A. Mitchell, R. G. Brown, D. -W. Yuan, S. -C. Chang, R. E. Utecht and D. E. Lewis, *J. Photochem. Photobiol. A*, 1998, **115**, 157–161; (*e*) B. Ramachandram, G. Saroja, N. B. Sankaran and A. Samanta, *J. Phys. Chem. B*, 2000, **104**, 11824–11832; (*f*) K. Rurack, M. Kollmannsberger, U. Resch-Genger and J. Daub, *J. Am. Chem. Soc.*, 2000, **122**, 968–969; (*g*) G. Hennrich, W. Walther, U. Resch-Genger and H. Sonnenschein, *Inorg. Chem.*, 2001, **40**, 641–644; (*h*) J.-S. Yang, C.-S. Lin and C.-Y. Hwang, *Org. Lett.*, 2001, **3**, 889–892; (*i*) S. Kaur and S. Kumar, *Chem. Commun.*, 2002, 2840–2841; (*j*) Q.-Y. Wu and E. V. Anslyn, *J. Am. Chem. Soc.*, 2004, **126**, 14682–14683; (*k*) M. Royzen, Z.-H. Dai and J. W. Canary, *J. Am. Chem. Soc.*, 2005, **127**, 1612–1613; (*l*) Z.-C. Xu, Y. Xiao, X.-H. Qian, J.-N. Cui and D.-W. Cui, *Org. Lett.*, 2005, **7**, 889–892; (*m*) B. Bag and P. K. Bharadwaj, *Org. Lett.*,

2005, **7**, 1573–1576; (*n*) Z.-C. Xu, X.-H. Qian and J.-N. Cui, *Org. Lett.*, 2005, **7**, 3029–3032; (*o*) R. Mart´ınez, A. Espinosa, A. Tarraga and P. ´ Molina, *Org. Lett.*, 2005, **7**, 5869–5872; (*p*) R. Mart´ınez, F. Zapata, A. Caballero, A. Espinosa, A. Tárraga and P. Molina, Org. Lett., 2006, **8**, 3235–3238; (*q*) H. Yang, Z.-Q. Liu, Z.-G. Zhou, E.-X. Shi, F.-Y. Li, Y.-K. Du, T. Yi and C.-H. Huang, *Tetrahedron Lett.*, 2006, **47**, 2911– 2914; (*r*) N. K. Singhal, B. Ramanujam, V. Mariappanadar and C. P. Rao, *Org. Lett.*, 2006, **8**, 3525–3528; (*s*) J. W. Liu and Y. Lu, *J. Am. Chem. Soc.*, 2007, **129**, 9838–9839; (*t*) X. Zhang, Y. Shiraishi and T. Hiral, *Org. Lett.*, 2007, **9**, 5039–5042; (*u*) S. H. Choi, K. Pang, K. Kim and D. G. Churchill, *Inorg. Chem.*, 2007, **46**, 10564–10577; (*v*) M. H. Lee, H. J. Kim, S. Yoon, N. Park and J. S. Kim, *Org. Lett.*, 2008, **10**, 213–216; (*w*) H. J. Kim, J. Hong, A. Hong, S. Ham, J. H. Lee and J. S. Kim, *Org. Lett.*, 2008, **10**, 1963–1966; (*x*) G.-K. Li, Z.-X. Xu, C. -F. Chen and Z.-T. Huang, *Chem. Commun.*, 2008, 1774–1776.

- 8 (*a*) V. Dujols, F. Ford and A. W. Czarnik, *J. Am. Chem. Soc.*, 1997, **119**, 7386–7387; (*b*) R. M. Kierat and R. Krämer, *Bioorg. Med. Chem. Lett.*, 2005, 15, 4824–4827; (*c*) J. Kovács, T. Rödler and A. Mokhir, Angew. Chem., Int. Ed., 2006, 45, 7815–7817; J. Kovács, T. Rödler and A. Mokhir, *Angew. Chem.*, 2006, **118**, 7979–7981; (*d*) X. Qi, E. J. Jun, L. Xu, S.-J. Kim, J. S. J. Hong, Y. J. Yoon and J. Yoon, *J. Org. Chem.*, 2006, **71**, 2881–2884; (*e*) J. Kovács and A. Mokhir, *Inorg. Chem.*, 2008, **47**, 1880–1882.
- 9 J. L. Bricks, K. Rurack, R. Radeglia, G. Reck, B. Schulz, H. Sonnenschein and U. Resch-Genger, *J. Chem. Soc. Perkin Trans. 2*, 2000, 1209–1214.
- 10 A. Mokhir and R. Krämer, *Chem. Commun.*, 2005, 2244–2246.
- 11 (*a*) T. Chiba and M. Okimoto, *J. Org. Chem.*, 1992, **57**, 1375–1379; (*b*) R.-Y. Yang and L.-X. Dai, *J. Org. Chem.*, 1993, **58**, 3381–3383; (*c*) S. Rostamizadeh and S. A. G. Housaini, *Tetrahedron Lett.*, 2004, **45**, 8753–8756; (*d*) M. Dabiri, P. Salehi, M. Baghbanzadeh and M. Bahramnejad, *Tetrahedron Lett.*, 2006, **47**, 6983–6986.
- 12 (*a*) B. Kratochvil, D. A. Zatko and R. Markuszewski, *Anal. Chem.*, 1966, **38**, 770–772; (*b*) B. Kratochvil and D. A. Zatko, *Anal. Chem.*, 1968, **40**, 422–424; (*c*) D. A. Zatko and B. Kratochvil, *Anal. Chem.*, 1968, **40**, 2120–2123; (*d*) M. Inamo, H. Kumagai, U. Harada, S. Itoh, S. Iwatsuki, K. Ishihara and H. D. Takagi, *Dalton Trans.*, 2004, **11**, 1703–1707; (e) M. S. Rodríguez-Morgade, M. Planells, T. Torres, P. Ballester and E. Palomares, *J. Mater. Chem.*, 2008, **18**, 176–181.
- 13 (*a*) C. Adachi, T. Tsutsui and S. Saito, *Appl. Phys. Lett.*, 1990, **56**, 799– 801; (*b*) A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burn, A. B. Holmes and A. Kraft, *Appl. Phys. Lett.*, 1992, **61**, 2793–2795; (*c*) W. L. Yu, H. Meng, J. Pei and W. Huang, *J. Am. Chem. Soc.*, 1998, **120**, 11808–11809; (*d*) J. J. Kim, K. -S. Kim, S. Baek, H. C. Kim and M. Ree, *J. Polym. Sci. Part A: Polym. Chem.*, 2002, **40**, 1173–1183; (*e*) K. T. Kamtekar, C.-S. Wang, S. Bettington, A. S. Batsanov, I. F. Perepichka, M. R. Bryce, J. H. Ahn, M. Rabinal and M. C. Petty, *J. Mater. Chem.*, 2006, **16**, 3823–3835; (*f*) K.-M. Yeh and Y. Chen, *J. Polym. Sci. Part A: Polym. Chem.*, 2006, **44**, 5362–5377; (*g*) J. Seo, S. Kim, S. H. Gihm, C. R. Park and S. Y. Park, *J. Mater. Chem.*, 2007, **17**, 5052–5057.